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Outline:
• Motivation
• Dynamics of Systems
• Active Control Concepts
• Active Control Examples
• Modern Control Approaches
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Fundamentals of Microgravity Vibration Isolation

• The ambient spacecraft acceleration levels are often 
higher than allowable from a science perspective.

• To reduce the acceleration levels to an acceptably 
quiescent level requires vibration isolation.

• Either passive or active isolation can be used 
depending on the needs or requirements of a specific 
application.

Introduction
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What is Vibration Isolation?
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• Low Frequency Position Control Loop:
• Maintains Centering
• Allows quasi-steady accel estimation  

Acceleration
Control Law

Reference
Acceleration
Command

-

• High Frequency Acceleration Control Loop:
• Cancels Inertial Motion of the Platform
• Allows “Good Vibrations”
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Why is Vibration Isolation Needed?

Transmissibility
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Attenuation Requirement 

Attenuation: the ratio of platform
motion to base motion
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To “follow” the base motion and prevent bumping at low frequencies, 
the isolation system must pass low frequency forces to the platform

Between 0.1 and 10 Hz, the attenuation must increase one order of
magnitude for every order of magnitude increase in frequency

Above 10 Hz, the attenuation must be 
greater than three orders of magnitude
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Single Degree Of Freedom (DOF) Example:
Spring-Mass-Damper

x0

x
isolated experiment 
acceleration

base acceleration

actFdistFxxkxxdxm +=−+−+ )0()0( &&&&Equation of motion:

Actuator

mass

Fdist

k d
Fact

The dynamic response of the mass to a base acceleration is a function of the 
system mass, stiffness, and damping.
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System Dynamics: Transmissibility

Transmissibility is the magnitude of the transfer function relating the 
acceleration (or position) of the mass to the base acceleration (or position).  The 
transmissibility specifies the attenuation of base motion as a function of 
frequency.  
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• Select spring stiffness, mass, and damping for attenuation
• Reduce break frequency by minimizing spring stiffness

Typically not desirable to increase isolated mass
• Select damping to trade between damped resonance and rate of 

attenuation
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Active Vibration Isolation

• Reduce the inertial motion of payload by sensing motion and 
applying forces to counter measured motion

• Active control can effectively change the system mass, 
stiffness, and damping as a function of frequency

• Whereas passive isolation only attenuates forces in passive 
elements, active control attenuates measured motion
• Only active control can mitigate payload response to 

payload-induced vibrations 

• Requires power, sensors, actuators, control electronics (analog 
and digital)
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Active Control Illustration

xin xout

Consider the transfer function from base position to mass displacement:

P =  ds + k
ms2 + ds + k P

Now measure the displacement and “feed it back” with gains (Ka, Kv, Kp) and 
a control law given by G = - Kas2 - Kvs - Kp
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The closed loop transfer function becomes:
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m x d x x k x x Fd is t Fa c t&& ( & & ) ( )+ − + − = +0 0

Equation of motion:

Active Isolation Example

Consider the control law:

The resulting closed loop
transmissibility is:

and the closed loop natural frequency and damping become:

)0()0( xxpKxxvKxaKactF −−−−−= &&&&

xx c l c l s c l
s c l c l s c l0

2 2
2 2 2=

+
+ +
ς ω ω

ς ω ω

ωc l

k K p

m K a

=
+

+

ς c l
d K v

k K p m K a

=
+

+ +

( )

( ) ( )2

x0

x

Actuator

mass

Fdist

k d
Fact

Recall the Spring-Mass-Damper Example
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Passive Isolation Active Isolation
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• Real systems aren’t simple one degree of freedom lumped masses with 
discrete springs and dampers.

• Control system design is a function of system properties which typically 
aren’t well known. 

The two key control design issues are performance and 
robustness. 

• Performance:  how well is isolation achieved?
• Robustness: how well are uncertainties tolerated by the control system?

Active Control Concepts

However, it isn’t as easy as it seems --
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Robustness and Performance
of a closed loop system are 
always in opposition

Pe
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Robustness

Key Control Issues

» Robustness to uncertainties:
» umbilical properties
» structural flexibility
» mass and inertia variations
» sensor & actuator dynamics

» Performance:
» base motion attenuation
» payload disturbances
» forced excitation
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Control Challenges

» Robustness to uncertainties:
» umbilical properties
» structural flexibility
» mass and inertia variations
» sensor & actuator dynamics

Low Gain &/or
Low Bandwidth

» Performance:
» base motion attenuation
» payload disturbances
» forced excitation

High Gain

High Bandwidth
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g-LIMIT 6DOF, Baseline PID Controllers (X-axis)
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Base acceleration = 1.6 sin(0.01 hz*t)+16 sin(0.1 hz*t)+160 sin(1 hz*t)+1600 sin(10 hz*t)+16000 sin(100 hz*t)

g-LIMIT 6DOF, Acceleration Time Response (X-axis)
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Modern Control Approaches 
to 

Microgravity Vibration Isolation

Robust multivariable microgravity vibration control systems 
maximize performance for a specified bounded set uncertainties
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Design for Nominal Performance (NP): H2 Methods

• Good nominal performance
• Performance metric well suited for µg vibration 

isolation
• Very poor robustness
• High order controllers
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Generalized Plant for H2 Design
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g-LIMIT  H2 Control Design

• Objective: minimize H2 norm of closed loop from disturbances, w, 
to performance variables, z

w =
base acceleration
payload induced force
accelerometer noise
position sensor noise

z =
weighted control
weighted acceleration
weighted relative position

y =
platform acceleration
relative position

u = control actuators
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g-LIMIT 6 DOF H2 Design Performance
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Design for Robust Stability (RS): H∞ Methods:

• Sufficient condition for RS of all plants in the set 
parameterized by the bounded model errors                       

is 
• Performance metric is the peak magnitude of transfer 

function – not well suited for µg vibration isolation
• High order controllers
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Design for Nominal Performance and Robust Stability 
Mixed H2 /H∞∞∞∞ Methods:

• Optimizes H2 nominal performance
• Guarantees H∞ robust stability 
• Optimized controller of FIXED DIMENSION
• Extremely computationally intensive
• Objective:

• NP -

• RS  -
uy
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maximum robustness
minimum performance

maximum performance
minimum robustness

H2
Norm

H-Infinity Norm

• The utility of mixed norm design is exploited by 
separating performance and robustness using the 
most appropriate norms

• A set of controllers is designed that explicitly trades 
between RS and NP

• Determine maximum achievable performance subject 
to robust stability constraints
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Where Do We Go From Here?

First generation isolation systems are currently in flight demonstration 
phase
Once operational, will require significant sustaining engineering

• payload scheduled control design
• routine ongoing performance/stability analysis
• loss of science time

Second generation systems should provide better isolation performance 
in a more cost effective manner

• maximize isolation performance
• minimize payload impacts
• autonomous operation & optimization
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Neural Network Based Adaptive Control Systems

Accommodate payload uncertainties/variations 

• mass/inertia

• structural modes

• center of gravity
Biologically inspired technology

• autonomous adaptation

• reduces sustaining engineering

• maximize isolation performance
Significant technology transfer potential
Demonstrated in various aerospace vehicle applications
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